2 research outputs found

    Quantum computations with atoms in optical lattices: marker qubits and molecular interactions

    Full text link
    We develop a scheme for quantum computation with neutral atoms, based on the concept of "marker" atoms, i.e., auxiliary atoms that can be efficiently transported in state-independent periodic external traps to operate quantum gates between physically distant qubits. This allows for relaxing a number of experimental constraints for quantum computation with neutral atoms in microscopic potential, including single-atom laser addressability. We discuss the advantages of this approach in a concrete physical scenario involving molecular interactions.Comment: 15 pages, 14 figure

    Quantum computation in optical lattices via global laser addressing

    Full text link
    A scheme for globally addressing a quantum computer is presented along with its realisation in an optical lattice setup of one, two or three dimensions. The required resources are mainly those necessary for performing quantum simulations of spin systems with optical lattices, circumventing the necessity for single qubit addressing. We present the control procedures, in terms of laser manipulations, required to realise universal quantum computation. Error avoidance with the help of the quantum Zeno effect is presented and a scheme for globally addressed error correction is given. The latter does not require measurements during the computation, facilitating its experimental implementation. As an illustrative example, the pulse sequence for the factorisation of the number fifteen is given.Comment: 11 pages, 10 figures, REVTEX. Initialisation and measurement procedures are adde
    corecore